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Outline

◮ Thermal photon excess as of 2014

◮ Current status: Data vs. models

◮ Magnetic field effects as a source of excess yield

◮ Gluon fusion into photons

◮ Conclusions
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PHENIX compared to models as of 2014: Yield underestimated

◮ Transport model: Linnyk, Cassing,

Bratkovskaya, Phys. Rev. C 89, 034908

(2014)

◮ Fireball model: van Hees, Gale, Rapp,

Phys. Rev. C 84, 054906 (2011)

◮ Hydro model: Shen, Heinz, Paquet,

Gale, Phys. Rev. C 89, 044910 (2014)
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PHENIX compared to models as of 2014: Yield underestimated
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PHENIX compared to models as of 2016: improvement
C. Shen e-Print: arXiv:1601.02563
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J.-F- Paquet et al., arXiv:1509.06738
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Summary of photon excess yield and flow:

◮ Models have improved (including updated photon emission
rates, viscosity, IP-Glasma)

◮ Models consistent with yield within the (lower part of)
uncertainties

◮ v2 still not well described

◮ v3 better described than v2
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Magnetic field in heavy-ion collisions
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Charge separation along the magnetic field
W. Broniowski, W. Florkowski, Phys. Rev. C 65, 024905 (2002)
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Photons from magnetic field

◮ Trace anomaly converts
energy-momentum of gluon bulk
into photons
G. Basar, D. Kharzeev, V. Skokov
Phys. Rev. Lett. 109, 202303
(2012)

◮ Photon emission by quark
synchrotron radiation
K.Tuchin, Phys. Rev. C 91,
014902 (2015)
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Photon production from gluon fusion

◮ Gluons are far more abundant than quarks at early times

◮ Largest magnetic field intensities and largest temperatures at early times of the collision

◮ Diagrams have same relative sign in the presence of magnetic field
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Fermion propagator in magnetic field

The fermion propagator in coordinate space cannot longer be
written as a simple Fourier transform of a momentum propagator

S(x , x ′) = Φ(x , x ′)

∫

d4p

(2π)4
e−ip·(x−x ′)S(p)

where

Φ(x , x ′) = exp

{

iqf

∫ x

x ′
dξµ

[

Aµ +
1

2
Fµν(ξ − x ′)ν

]}

is called the phase factor
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Matrix element

M(a) = −
∫

d4x

∫

d4y

∫

d4z

∫

d4p

(2π)4

∫

d4q

(2π)4

∫

d4k

(2π)4

× e−ip·(y−x)e−iq·(z−y)e−ik·(x−z)e−iu·ze−iv ·ye ir ·x

× Tr
[

iqf γµiS(k)igγαt
c iS(q)igγνt

d iS(p)
]

× Φ(x , y)Φ(y , z)Φ(z , x)ǫ∗µ(λr )ǫ
α(λu)ǫ

ν(λv ).
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Fermion propagator in magnetic field: Intense field =⇒ Lowest Landau Level

The piece of the propagator S(p) in momentum-space

iS(p) =

∫ ∞

0

ds

cos(qf Bs)
e
is(p2

‖
−p2⊥

tan(qf Bs)

qf Bs
−m2

f
+iǫ)

×
[

(cos(qf Bs) + γ1γ2 sin(qf Bs)) (mf + 6p‖)−
6p⊥

cos(qf Bs)

]

LLL−→ 2ie
−

p2⊥
qf B

(6p‖ +mf )

p2‖ −m2
f

[

1− iγ1γ2
2

]

The operator

O‖ = [1− iγ1γ2] /2

projects onto the longitudinal space. Therefore the matrix
element can be factorized into a product of transverse and
longitudinal pieces
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Matrix element fractorizes into product of transverse and longitudinal pieces

M(a) = (2π)4δ4(r − v − u)M(a)
⊥ M(a)

‖

M(a)
⊥ =

(

4π

qf B

)2 ∫
d2p⊥

(2π)2

∫

d2q⊥

(2π)2

∫

d2k⊥

(2π)2

× e
−

k2⊥
qf B e

−
q2⊥
qf B e

−
p2⊥
qf B

∏

i ,j=1,2

e
i 2
qf B

ǫij(q−k+u)i (q−p−v)j

=

(

qf B

12π

)

e
−

(u+v)2⊥
3qf B ,

M(a)
‖ = −8

(

qf g
2δcd

2

)
∫

d2p‖

(2π)2

∫

d2q‖

(2π)2

∫

d2k‖

(2π)2

× (2π)4δ2
[

(q − k + u)‖
]

δ2
[

(q − p − v)‖
]

ǫ∗µ(λr )

×
Tr

[

γµ 6k‖O‖γα 6q‖O‖γν 6p‖O‖

]

k2‖q
2
‖p

2
‖

ǫα(λu)ǫ
ν(λv )
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Early stages, gluons more abundant, quarks don’t thermalize

◮ Hierarchy of energy scales
√
eB > T > m

◮ Early stages gluons far more abundant than quarks

◮ Assume quarks do not yet thermalize.

◮ mf = 0 since in the absence of thermal corrections, the
light-quark vacuum masses are negligible.

◮ The trace contains the product of up to twelve gamma
matrices. Upon squaring and summing over polarizations, only
a small piece survives

Tr
[

γµ 6k‖O‖γα 6q‖O‖γν 6p‖O‖

]

−→ k‖ν(p‖µq‖α − p‖αq‖µ)

+ k‖µ(p‖νq‖α + p‖αq‖ν)

+ k‖α(p‖νq‖µ − p‖µq‖ν)
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Kinematical simplifications

◮ For photons emitted at mid-rapidity, momentum components
along the reaction plane are small.

◮ Reaction plane is perpendicular to the magnetic field then
r⊥ = (u + v)⊥ ≃ 0.

◮ Focus on photons with small momentum r3 = (v + u)3 ≃ 0.

◮ Focus on describing emission of real photons r2 = (u+ v)2 = 0.

◮ The main thermal effect on low momentum gluons is the
development of a thermal mass mg ∼ gT .
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Photon yield mf = 0, thermal gluons, low pt photons

r0dN

d3r
=

1

2(2π)3

∫

d3u

2u0(2π)3

∫

d3v

2v0(2π)3

×
∑

pol,f

|M|2 n(u0)n(v0)

1

2πNrt

dN

drt
=

[

(

1
3

)4
e−2

y20 r
2
t

eB +
(

2
3

)4
e−

y20 r
2
t

eB

]

I (rt/T )
2π

√

3πeB/2
[

(

2
3

)9/2
+
(

1
3

)9/2
]

∫∞
0 drt I (rt/T )

I (z ;λ) ≡
∫ z

0

dxx2n
(

√

(z + x)2 − (2x)2
)

n(x)
(√

x2 + λ2
)(

√

(z + x)2 − (2x)2 + λ2
)
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Magnetic field strength with time and impact parameter
L. Adamcyk, et al. (STAR COllaboration), Phys. Rev. Lett. 113, 052302 (2014)
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Centrality vs. impact parameter
W. Broniowski, W. Florkowski, Phys. Rev. C 65, 024905 (2002)
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Excess photon yield from magnetic field induced gluon fusion compared to
McGuil hydro
A.A., J. Castaño-Yepes, C. A. Dominguez, L. Hernández, arXiv:1604.02713

◮ T = 300 MeV for
√
sNN = 200 GeV (RHIC)

◮ T = 350 MeV for
√
sNN = 2.76 TeV (LHC)

◮ g = 1

◮ 0.5 × 104 < eB/(MeV)2 < 105 for RHIC

◮ eB/(MeV)2 ≃ 104 for LHC
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Conclusions

◮ Magnetic fields originate observable phenomena in heavy-ion
collisions

◮ Magnetic field induce processes otherwise now allowed such as
emission of photons from gluon fusion

◮ Size of excess yield can be accounted for using reasonable
values for eB , T and g .

◮ Magnetic fields naturally induce asymmetry (v2).

◮ v3 seems to be better described by models without magnetic
field than v2.


